6-[2,6-Diacetoxy-9-(5-acetyl-2-furanyl)-5-ethyl-1,3,7-tri-methyl-4-oxodecyl]- $\alpha$-ethyltetrahydro- 5 -methyl- 2 H -pyran-2-acetic Acid (5). A magnetically stirred solution of 4.0 g (7.9 mmol ) of 1 and 120 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0-5^{\circ} \mathrm{C}$ and then treated with 10.0 g ( 72 mmol ) of $\mathrm{AcOSO}_{2} \mathrm{Me}^{7,8}$ for 1 h . After workup, the residue was chromatographed ( $3: 1$ hexane- $\mathrm{Me}_{2} \mathrm{CO}$ ) to afford 5 as an amorphous solid: yield $1.33 \mathrm{~g}(27 \%)$; UV $\lambda_{\text {max }}$ (MeCN) 218 ( $\epsilon 2350$ ), 280 nm ( 10100 ); ${ }^{1} \mathrm{H}$ NMR (selected peaks of interest) $\delta 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, 1$ H), 3.92 (d, 1 H), 4.94 (q, 1 H), 5.36 (d, 1 H), 6.15 (d, 1 H), 7.19 (d, 1 H ); mass spectrum, $m / e 634$ (molecular ion), 574 (less AcOH), 514 (less two AcOH), and others.
$\alpha$-Ethyl-6-[5-ethyl-1,3,7-trimethyl-4-oxo-2,6-bis(trifluoro-acetoxy)-9-[5-(trifluoroacetyl)-2-furanyl]decyl]tetrahydro-5-methyl-2H-pyran-2-acetic Acid (6). With magnetic stirring and ice-bath cooling, a solution of $1.00 \mathrm{~g}(2.0 \mathrm{mmol})$ of 1 and 20 mL of pyridine was treated with $6.2 \mathrm{~g}(4.2 \mathrm{~mL}, 30 \mathrm{mmol})$ of $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$. The reaction solution was allowed to warm to room temperature. After 3 h the reaction solution was worked up. The residue was chromatographed (AcOEt) to afford 6 as an amorphous solid: yield $1.15 \mathrm{~g}(73 \%)$; $\mathrm{UV} \lambda_{\text {max }}(\mathrm{MeCN}) 229(\epsilon 2635), 304$ nm (8960); ${ }^{1} \mathrm{H}$ NMR (selected peaks of interest) $\delta 3.47$ (d, 1 H ), $4.00(\mathrm{q}, 1 \mathrm{H}), 5.08$ (dd, 1 H$), 5.51(\mathrm{~d}, 1 \mathrm{H}), 6.32(\mathrm{~d}, 1 \mathrm{H}), 7.48$ (dd, 1 H ). This material was used without further purification in the reaction described below.
$\alpha$-Ethyl-6-[5-ethyl-2,6-dihydroxy-1,3,7-trimethyl-4-oxo-9-[5-(trifluoroacetyl)-2-furanyl]decyl]tetrahydro-5-methyl$2 \boldsymbol{H}$-pyran-2-acetic Acid (7). At room temperature and with magnetic stirring, a solution of $350 \mathrm{mg}(0.44 \mathrm{mmol})$ of 6 and 20 mL of MeOH was treated with 1.0 mL of concentrated aqueous $\mathrm{NH}_{4} \mathrm{OH}$ over a period of 1 min . Stirring was continued for 1 h ; the solution was evaporated under reduced pressure to furnish an aqueous mixture of organic materials. The aqueous mixture was extracted with $\mathrm{CHCl}_{3}$, the combined extracts were filtered, and the filtrate was dried. The filtrate was then evaporated to furnish 7 as an amorphous solid: yield $200 \mathrm{mg}\left(75 \%\right.$ ); UV $\lambda_{\max }$ (MeCN) 232 ( $\epsilon 1860$ ), $307 \mathrm{~nm}(12500)$; ${ }^{1} \mathrm{H}$ NMR (selected peaks of interest) $\delta 3.68(\mathrm{~d}, 1 \mathrm{H}), 3.79(\mathrm{~d}, 1 \mathrm{H}), 3.92(\mathrm{q}, 1 \mathrm{H}), 4.13(\mathrm{~d}$, $1 \mathrm{H}), 6.43(\mathrm{~d}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H})$; high-resolution mass spectrum, $\mathrm{m} / e 604.3191$ (molecular ion $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{~F}_{3} \mathrm{O}_{8}$ requires 604.3223).
$\alpha$-Ethyl-6-[5-ethyl-9-(2-furanyl)-1,3,7-trimethyl-4-oxo-2,6-bis(trifluoroacetoxy)decyl]tetrahydro-5-methyl-2H-pyran-2-acetic Acid (8). Under a $\mathrm{N}_{2}$ atmosphere and with magnetic stirring, a solution of 2.00 g ( 3.9 mmol ) of 1 and 20 mL of pyridine was cooled to -10 to $-5^{\circ} \mathrm{C}$; $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(1.78 \mathrm{~g}, 1.20 \mathrm{~mL}, 8.5 \mathrm{mmol})$ was added. Stirring and cooling were continued for 1.5 h , and then the reaction solution was allowed to warm to room temperature ( 2 h ). After workup and chromatography ( $3: 1$ hexane$\mathrm{Me}_{2} \mathrm{CO}$ ), there was obtained 8 as an amorphous solid: yield 1.05 $\mathrm{g}(38 \%) ; \mathrm{UV} \lambda_{\max }(\mathrm{MeCN}) 222 \mathrm{~nm}(\epsilon 13700) ;{ }^{1} \mathrm{H}$ NMR (selected
peaks of interest) $\delta 3.50$ (dd, 1 H ), 3.99 (m, 1 H ), 5.10 (dd, 1 H ), 5.55 (dd, 1 H), 5.96 (d, 1 H), 6.27 (dd, 1 H), 7.28 (d, 1 H). This material was used without further identification or purification in the reaction described below.
6-[9-(5-Acetyl-2-furanyl)-5-ethyl-2,6-dihydroxy-1,3,7-tri-methyl-4-oxodecyl]- $\alpha$-ethyltetrahydro- 5 -methyl- $2 \boldsymbol{H}$-pyran-2-acetic Acid (9). With magnetic stirring, a solution of 3.70 g ( 5.28 mmol ) of 8 and 70 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to- $5{ }^{\circ} \mathrm{C}$. $\mathrm{AcOSO}_{2} \mathrm{Me}\left(3.33 \mathrm{~g}, 26 \mathrm{mmol}\right.$ ) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and the reaction solution was stirred for 3 h at $0^{\circ} \mathrm{C}$. After workup and chromatography ( $4: 1$ hexane-EtOAc), there was obtained 9 contaminated with about $5-10 \%$ of 5 : yield $1.66 \mathrm{~g}(57 \%)$ UV $\lambda_{\text {max }}(\mathrm{MeCN}) 218$ (e 3170 ), $281 \mathrm{~nm}(13500) ;{ }^{1} \mathrm{H}$ NMR (selected peaks of interest) $\delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, 1 \mathrm{H}), 3.75(\mathrm{~d}, 1 \mathrm{H}), 3.96$ (q, 1 H ), 4.08 (d, 1 H, under EtOAc peak), 6.23 (d, 1 H ), 7.05 (m, 1 H ); high-resolution mass spectrum, $m / e 550.3516$ (molecular ion $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{8}$ requires 550.3505 ).
Method for Reduction of Ketones 6, 7, and 9. Under a $\mathrm{N}_{2}$ atmosphere with magnetic stirring, a mixture of 30 molar equiv of $\mathrm{NaBH}_{4}$ and 60 parts of MeOH was cooled to $-5^{\circ} \mathrm{C}$. Over a $30-\mathrm{min}$ period, a solution of 1 molar equiv of ketone in MeOH was added dropwise to the mixture. Cooling and stirring were continued for 1 h ; the mixture was allowed to warm to room temperature ( 3.5 h ). After workup and chromatography ( $19: 1$ $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ), there was obtained a mixture of the corresponding epimeric alcohols as an amorphous solid. The reaction was judged to be complete when there was no significant absorption in the $280-310-\mathrm{nm}$ region of the UV spectrum
Biological Evaluation. The compounds described in this article were evaluated for anticoccidial activity by the method of Lynch. ${ }^{11}$ The maximum dose employed was 120 ppm of compound in feed, i.e., twice the recommended dose for salinomycin in commercial applications. ${ }^{12}$

Acknowledgment. For evaluating the compounds mentioned in this article for anticoccidial activity we thank our co-workers from the Pfizer Central Research Division: Edward J. Feeney, Dr. Thomas T. Migaki, Deborah Newcomb (nee van Wormer), Dr. Julie A. Olson, and Dr. Anthony P. Ricketts.

Supplementary Material Available: The X-ray structure, tables of the atomic positional and thermal parameters, bond distances, and bond angles for 1 ( 9 pages). Ordering information is given on any current masthead page.
(11) Lynch, J. E. Am. J. Vet. Res. 1961, 22, 324.
(12) Feed Additive Compendium; Leidahl, R., Ed.; Miller: Minneapolis, MN, 1985; p 304(a).

## Additions and Corrections

## Bruce E. Maryanoff,* David F. McComsey, Joseph F.

 Gardocki, Richard P. Shank, Michael J. Costanzo, Samuel O. Nortey, Craig R. Schneider, and Paulette E. Setler: Pyrroloisoquinoline Antidepressants. 2. InDepth Exploration of Structure-Activity Relationships.Page 1440. Table IV, compound 23a (in numerical sequence) was incorrectly shown as 38 a.

Page 1453. Column 2, line 26: " 5 -HT" should be " S "; lines 31 and 32: The " 5 -" (before " $\mathrm{S}_{1}$ " and " $\mathrm{S}_{2}$ ") should be ignored.

Page 1445. Column 1: " 66 b" (used twice) and " $7 \mathbf{b}$ " should read "66a" and "7a". Also, "66b" on pp 1434 (column 2), 1438 (Table II and footnotes $r$ annd $u$ to Table II), 1441 (Table IV), and 1443 (column 1) should read "66a".

